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Simple Model for Linear and Nonlinear Mixing at Unstable
Fluid Interfaces with Variable Acceleration 1

John D. Ramshaw
Lawrence Livermore National Laboratory

A simple model is described for predicting the time evolution of the half-widthh of a planar mixing
layer between two immiscible incompressible fluids driven by an arbitrary time-dependent variable
acceleration historya(t): The model is based on a heuristic expression for the kinetic energy per
unit area of the mixing layer. This expression is based on that for the kinetic energy of a linearly
perturbed interface, but with a dynamically renormalized wavelength which becomes proportional
to h in the nonlinear regime. An equation of motion forh is then derived by means of Lagrange’s
equations. This model reproduces the known linear growth rates of the Rayleigh-Taylor (RT) and
Richtmyer-Meshkov (RM) instabilities, as well as the quadratic RT and power-law RM growth laws
in the nonlinear regime. The time exponent in the RM power law depends on the rate of kinetic
energy dissipation. In the case of zero dissipation, this exponent reduces to 2/3 in agreement
with elementary scaling arguments. A conservative numerical scheme is proposed to solve the
model equations, and is used to perform calculations that agree well with published mixing data
from linear electric motor experiments. Considerations involved in implementing the model in
hydrodynamics codes are briefly discussed.
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Introduction
There is considerable current interest in material interpenetration and mixing at unstable fluid

interfaces, particularly those driven by the normal acceleration of adjacent fluid layers with dif-
ferent densities. These processes can in principle be computed in detail by direct numerical sim-
ulations, and recent advances in computer hardware and numerical methodology now make this
feasible in some problems. In most practical applications, however, computer time and storage
limitations still preclude a complete simulation of the very wide range of length and time scales
that such instabilities produce. It is therefore of interest to develop models which capture the es-
sential physics of such instabilities so that their effects can be simulated with reasonable accuracy
on presently available computers. There is a particular need for mix models which are sufficiently
simple that they can be retrofitted into existing hydrodynamics codes on a relatively short time
scale. In order to be useful in practical problems, it is essential for such models to allow for
an arbitrary time-dependent acceleration historya(t): It is also essential for them to reproduce
the known growth behavior of the incompressible Rayleigh-Taylor (RT) and Richtmyer-Meshkov
(RM) instabilities in both the linear and nonlinear (late-time) regimes as special cases. Some prob-
lems with accelerated interfaces also involve tangential velocity discontinuities, so a general mix
model should ideally include the Kelvin-Helmholtz (KH) instability as well.

Mix models of this type will necessarily be phenomenological in character, but they should be
as fundamentally based as their simplicity allows. Most previous simple mix models have been

1Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National
Laboratory under contract No. W-7405-ENG-48.
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based on bubble rise dynamics, and contain various empirical coefficients (such as drag, buoyancy,
and added mass coefficients) which are not directly accessible experimentally. Here we describe
a different approach based only on the more general concepts of energy conservation and scale
invariance, and we summarize the current status of a family of simple mix models that are being
developed using this approach (Ramshaw 1998a,b,c). We also briefly address some of the issues
involved in implementing such models in hydrodynamics codes (Ramshaw 1998d). The present
discussion is necessarily somewhat abbreviated, and the reader is referred to the papers cited above
for further details and references to the original literature.

Review of Planar RT and RM Instabilities
In the linear regime, the growth law for the amplitudeh(t) of a small sinusoidal perturbation

on an accelerated planar interface between two incompressible fluids is well known and is given
by

��h = 2�Aa(t)h (1)

where� is the wavelength of the perturbation,_q = dq=dt for anyq; A = (�2 � �1)=(�2 + �1) is
the Atwood number,�i is the density of fluidi; anda(t) is the acceleration, defined as positive
when directed from fluid 1 into fluid 2. In the RT case,a = const and Eq. (1) predicts exponential
growth whenAa > 0: In the RM case,a(t) = �v�(t) and Eq. (1) predicts linear growth regardless
of the sign ofA�v:

In the nonlinear late-time regime the mixing layer becomes asymmetrical, and it is conventional
to defineh as the visual penetration depth of the lighter fluid into the heavier one. The nonlinear RT
growth law ish(t) = �Aat2; which follows from a simple dimensional argument. This growth law
has been well verified experimentally with values of� clustering in a narrow range about 0.06. The
corresponding nonlinear RM growth law ish(t) � t�; where there is considerable experimental
uncertainty in the value of�: A simple dimensional argument shows that� = 2=3 in the absence of
dissipation (Ramshaw 1998a). Other arguments indicate that this should be an upper bound, which
is consistent with most of the values reported in the literature.

Although they are both special cases of instabilities at accelerated interfaces, the RT and RM
instabilities are fundamentally different in one respect: the RT instability is generally believed to
forget its initial conditions at late times, whereas the RM instability remembers them. The reason
for this is that is the implusive acceleration is the only source of energy in the RM problem, so
the energy deposited by the impulse is never forgotten. This energy depends on the amplitude
and wavelength of the initial perturbation, so it is clear that a useful general model must exhibit a
dependence upon these parameters.

In contrast to the linear growth law of Eq. (1), which is valid for an arbitrary acceleration his-
tory a(t); the extrapolation of the nonlinear RT and RM growth laws to an arbitrarya(t) is not at
all obvious. Our primary objective is to construct a model which captures the essential physics
of nonlinear mixing for arbitrarya(t) and properly reduces to the known behavior in the above
special cases. This will be done by evaluating the kinetic energy of the mixing layer for a linear
perturbation, extrapolating it into the nonlinear regime by means of a wavelength renormalization
hypothesis to be described below, and substituting the resulting energy into Lagrange’s equations
to obtain a nonlinear equation of motion forh(t):
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Kinetic Energy in the Linear Regime
The kinetic energy per unit area of an accelerated mixing layer can readily be evaluated from

the linear potential flow solution, with the result (Ramshaw 1998a)

T =
���

4�
_h2 � 1

2
��h _h _Z +

1

2
M _Z2 (2)

whereZ(t) is the location of the original unperturbed interface,2�� = �1+�2;�� = �2��1 = 2��A;

andM is the total mass per unit area. The acceleration of the layer is simplya = �Z; which is
produced by external forces acting on the boundaries of the mixing layer far from the interface.
These forces are independent ofh; so they may be omitted from Lagrange’s equation forh: The
LagrangianL can therefore simply be identified withT; and it is then easy to verify that the
resulting Lagrange equation of motion forh is simply Eq. (1) above. The use of Lagrange’s
equations therefore reproduces the correct linearized dynamics of the interface. The advantage
of this approach is that it permits a straightforward extension into the nonlinear regime as shown
below.

The Wavelength Renormalization Hypothesis
The present class of models is based on the fundamental but apparently drastic hypothesis that

the linear expression forT remains valid in the nonlinear regime with� replaced by�(t) = bjh(t)j;
whereb is a dimensionless coefficient of order unity. We refer to this hypothesis as the wavelength
renormalization hypothesis (WRH). The WRH may be motivated heuristically by observing that in
the nonlinear regime, the mixing layer contains no intrinsic length scale other than its own width,
so there is no objective basis for describing it as either thick or thin. Viewed from sufficiently far
away (i.e, if you back up or “zoom out” enough), the mixing layer always looks thin. But this
means the interface always looks like it is only slightly perturbed, with a perturbation amplitude of
orderh: Of course this perturbation is irregular rather than sinusoidal, but the characteristic length
scale of these irregularities is also of orderh and may be expected to play the role of the effective
wavelength of the perturbation. These considerations suggest that, at least in some rough scaling
sense, the system is always in the linear regime! It is then not unreasonable to expect the mixing
layer to behave in an essentially linear manner but with a time-dependent� which is continuously
dynamically renormalized to a value of orderh:

Construction of the Nonlinear Model
The nonlinear model may now be constructed simply by replacing� by � = �(h) in Eq. (2)

for T and substituting the result into Lagrange’s equation of motion forh; with an additional
generalized force introduced to represent the dissipation of kinetic energy due to viscosity at small
length scales. This gives (Ramshaw 1998a)

��h+
1

2
_� _h+ 2�cj _hj _h� 2�Aah = 0 (3)

wherec � 1 is the dissipation coefficient, which is set to zero in the linear regime. Equation (3)
is the basic dynamical evolution equation of the model. In the linear regime,_� = 0 and we regain
the correct linear growth law of Eq. (1).

Since the nonlinear model was derived by means of Lagrange’s equations, it automatically
conserves energy when dissipation is absent. This essential property takes its simplest form in the
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pure RT case, wherea = const: It is then easy to verify that whenc = 0; the total perturbation
energy

E =
���

4�
_h2 � 1

2
��Aah2 (4)

is conserved by Eq. (3) in both the linear and nonlinear regimes.
We have not yet verified that the model correctly reproduces the known growth behavior of

the nonlinear RT and RM instabilities. This will be done in the next section, and in the process
we shall find that the parametersb andc are uniquely determined by the measured experimental
growth rates for these instabilities.

Nonlinear RT and RM Instabilities
According to the WRH,� = bjhj in the nonlinear regime. It is then easy to verify that the RT

scaling lawh = �Aat2 satisfies Eq. (3) for constanta provided that

� =
�

2b+ 4�c
(5)

Similarly, in the RM case,a(t) = �v�(t) and Eq. (3) predicts thath � t� with

� =
2b

3b + 4�c
(6)

These relations can be inverted to obtain

b =
��

�(2� �)
(7)

c =
2� 3�

4�(2� �)
(8)

Whenc = 0; Eq. (6) reduces to� = 2=3 as it should. Equations (7) and (8) determine the model
parametersb andc in terms of the experimentally accessible parameters� and�; which may be
obtained from pure RT and RM experiments, respectively.

Transition Between the Linear and Nonlinear Regimes
In the linear regime the perturbation wavelength� is constant with its initial value�0; whereas

in the nonlinear regime we have� = bjhj in accordance with the WRH. It is necessary to prescribe
a transition between these two limits so that an initially small perturbation can grow and evolve
into a fully developed mixing layer. A simple way of effecting this transition is to set

� = max(�0; bjhj+ (1�mb)�0) (9)

wherem � 1 is a parameter which makes the transition occur atjhj = m�0: However, this is
clearly an abrupt and highly oversimplified transition rule, and more gradual and realistic alterna-
tives should also be explored.

Relation to Previous ODE Models
Whenc = 0 and the linear-to-nonlinear transition is replaced by� = �0 + bjhj; the model

reduces to an earlier unpublished model proposed by Pete Stry. The relation to other simple mix
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models may be seen by lettingv = _h: In the nonlinear regime, the present model then takes the
form

_v =
2�h

bjhjAa�
�
v

2h
+

2�c

b

����vh
����
�
v (10)

Equation (10) strongly resembles earlier bubble-dynamics models used by Youngs, Dimonte, et
al. However, these models frequently omit the linear regime and the absolute value signs. The
former is essential to obtain the correct dependence on initial conditions in RM problems, while
the latter are essential to obtain the correct oscillatory and demixing behavior in RT stable cases
with Aa < 0 (Ramshaw 1998a). Note in particular that the term quadratic inv is not a pure drag
term as has previously been presumed, as it does not always opposev and does not vanish when
c = 0:
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Figure 1: Comparison of model calculations with experimental data for four different acceleration
histories.

Comparison with Dimonte-Schneider Experimental Data
Dimonte and Schneider (1996) (DS) have reported experimental measurements of the growth of

a mixing layer between two incompressible fluids subjected to four different acceleration histories.
Figure 1 shows a comparison between the experimental data and the model predictions. The latter
were obtained by solving Eq. (3) numerically using a conservative numerical scheme (Ramshaw
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1998a) and the DS parameter values of� = 0:061 and� = 0:37: The agreement is quite satisfac-
tory, but these four experiments do not of course explore all the conditions of interest, and further
comparisons of model predictions with experiments and/or direct numerical simulations will be
required to obtain a better assessment of the overall accuracy and utility of the model.

Inclusion of Kelvin-Helmholtz Instability
We now consider the case in which the two fluids in the accelerated mixing layer also have

nonzero tangential velocitiesu1 andu2 far from the interface. The potential flow solution for
this case is easily obtained, and the kinetic energyT can be evaluated from it just as before.
Unfortunately, Lagrange’s equations no longer apply, becauseh is no longer a proper generalized
coordinate when�u � u2 � u1 6= 0 (Ramshaw 1998c). However, energy is of course still
conserved, and this may be invoked to derive the equation of motion forh from T: The result is

��h+
1

2
_� _h� 2�Aah� 2�2�1�2�u2

(�1 + �2)2
h

�

 
2� h

�

d�

dh

!
= � 2�cj _hj _h (11)

Note that there are no new parameters associated with the KH instability. In the linear regime
where� = �0 = const andc = 0; Eq. (11) reduces to the known linear stability result for that
case. It also reduces to Eq. (3) when�u = 0 as it should. Moreover, for a pure KH instability in
the nonlinear regime, where� = bjhj; we find

_h =
�(2� �)q
�(1� �)

p
2�1�2

�1 + �2
j�uj (12)

In the special case of equal densities and using the Dimonte-Schneider values of� and�; Eq. (12)
reduces to_h = �j�uj with � = 0:15: This is reasonably close to values of� reported in the
literature for this case, which are subject to considerable uncertainty but tend to lie between 0.06
and 0.12.

Spherical Geometry
Accelerated material interfaces are of course not always planar. It is therefore of interest to

examine the effects of interface curvature, the simplest cases of which are cylindrical and spherical
interfaces. Here we consider the spherical case (Ramshaw 1998b), which occurs in inertial con-
finement fusion and in certain astrophysical problems. In this case we can again follow the same
procedure used to obtain Eq. (3). The kinetic energy of the linearized potential flow resulting from
a spherical harmonic perturbation of order` is readily found to be

T = T0 + 2�(2�` ���)R _Rh(R _h+ _Rh) + ��`R
3 _h2 (13)

whereR(t) is the radius of the interface between adjacent concentric spherical shells of inner and
outer radiiR1 andR2 respectively,�` = �1=`+ �2=(`+ 1); and

T0 = 2�R4 _R2

�
�1

�
1

R1

� 1

R

�
+ �2

�
1

R
� 1

R2

��
(14)

The equation of motion forh is then obtained by substitutingT into Lagrange’s equations as before.
In the linear regime wherè= `0 = const; this yields the well known Plesset stability equation for
this case. In the nonlinear regime we again adopt the WRH, with the effective wavelength defined
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as twice the mean distance between nodes; i.e.,� = 2�R=`: The resulting equation of motion for
s = R2h is

2R2
d

dt

�
�` _s

R

�
�
 
@�`

@s

!
R _s2 � 2�� �Rs+ 4c��

j _sj _s
R2

= 0 (15)

The volume of fluid exchanged across the interface is proportional tos, sos is a better measure of
the degree of mixing thanh: Indeed, in problems with large changes inR; impressions of mixing
inferred fromh alone can be highly misleading (Ramshaw 1998b).

Implementation in Hydrodynamics Codes
Simple models of the present type can be used in a stand-alone manner for a given interface

accelerationa(t) and slip velocity�u(t): In practical problems, however, these quantities are not
known a priori but are influenced by the mixing itself. That is to say, the mixing dynamically
interacts with the hydrodynamic processes that produce the acceleration and slip velocity, and it is
necessary to allow for this interaction in order to obtain self-consistent results. This requires the
mix model to be dynamically coupled to the hydrodynamics code that is used to compute the fluid
flow field in which the unstable interface is embedded. It is by no means clear how best to effect
this coupling. In fact, the answer to this question will depend on the particular hydrodynamics code
in question, including the numerical scheme and the other physical submodels (such as turbulence
models and diffusion fluxes) with which the mix model must communicate. These issues are
fraught with subtleties and ambiguities and are not yet resolved. We shall therefore not attempt a
comprehensive discussion of the many possible approaches, but will confine our attention to one
particularly simple approach which is currently being explored (Ramshaw 1998d).

The approach in question consists in essence of using the mix model to determine the outer
boundaries of the growing mixing layer; i.e., the region within which the two fluid materials have
been mixed together by the instability, and outside of which they remain pure. Once these bound-
aries have been located, an auxiliary procedure is used to compute the transport of materials in the
interior of the mixing layer. This approach is particularly well suited for use in one-dimensional
Lagrangian hydrodynamics codes, but can be adapted to other codes as well.

If the original interface is horizontal and located atz = Z(t); with fluid 1 below and fluid
2 above, then the boundaries of the mixing layer are clearly located atz = Z(t) � h1(t) and
z = Z(t) + h2(t); wherehi(t) = jh(t)j if i is the heavier fluid andhi(t) = jhs(t)j if i is the lighter
fluid, wherehs(t) is the spike penetration depth. The present class of models computes the bubble
penetration depthh but not the spike penetrationhs: However, empirical correlations are available
which expresshs in terms ofh andA; sohs may be assumed known for present purposes.

One might at first think thatZ(t) should be identified with the Lagrangian surface which co-
incides with the original unperturbed interface att = 0 and moves with the normal fluid velocity
w: This would be wrong, however, because the surfacez = Z(t) is a surface across which no net
volumeflows, whereas a Lagrangian surface is one across which no netmassflows. Since the two
fluids have different densities, the mixing carries heavier fluid into lighter fluid (and vice versa),
which results in a net mass flux across the surfacez = Z(t) in the direction of the lighter fluid.
The surfacez = Z(t) is therefore not Lagrangian, and consequently moves with respect to a La-
grangian mesh. It is essential to compute this relative motion in order to determineZ(t) and hence
the boundaries of the mixing layer.
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The relation between the interface velocity_Z and the fluid velocityw normal to the interface
may be determined by evaluating the mass flux across the interface due to the mixing. This in turn
requires knowledge of the volume per unit areaV (t) transported (exchanged) across the original
interface. ClearlyV (t) is of orderjh(t)j; so we may writeV = 
jhj; where
 is a dimensionless
coefficient of order unity. It is easy to show that
 = 1=� for sine waves and
 = 0:5 for square
waves, so it is probably reasonable to set
 � 0.35–0.4 for general use. The net mass flux across
the interface is then given by

_M = (�1 � �2) _V = � 
��
djhj
dt

(16)

But in a hydrodynamics code, this same mass flux is given by_M = ��0[w(Z(t); t)� _Z]; where��0
is the mean fluid density atz = Z: Equating these two expressions for_M; we obtain

_Z = w + 

��

��0

djhj
dt

(17)

This determines the motion of the interface, and together withh thereby determines the outer
boundaries of the mixing layer.

In order to calculate the nonuniform distribution of material masses within the mixing region,
we must compute the local mass fluxesJ1(z) andJ2(z) of materials 1 and 2 relative tow: The
values of these fluxes atz = Z(t) can be evaluated in the same way as_M; with the result

J1(Z) = � J2(Z) = 

�1�2

��0

djhj
dt

(18)

To obtain the fluxesJi(z) at intermediate points, it is then necessary to interpolate betweenJi(Z)

and the edges of the mixing layer, whereJi = 0: There is no unique way to do this, but it is easy
to come up with reasonable prescriptions (Ramshaw 1998d). Further experimental and/or direct
numerical simulation data on the profiles of these fluxes and material distributions would be most
welcome.

Unresolved Issues and Missing Physics
These models are still evolving, and do not yet contain all of the ingredients that are expected

to be needed for realistic simulations of practical problems. There are several unresolved issues
and areas where further improvement is needed, including:

� The sudden transition between the linear and nonlinear regimes provided by Eq. (9) should
be replaced by a more realistic and gradual transition, possibly including a weakly nonlinear
transitional regime.

� WhenAa(t) < 0 the model properly predicts demixing (reseparation) of the two fluids, but
at a rate which is expected to be too fast (Ramshaw 1998a).

� The models described here are incompressible, and hence neglect compressibility effects
which are often important in practical applications. In particular, RM instability studies
have shown that it is important to distinguish between and correct for differences between
the preshock and postshock values ofh andA: Previous simple mix models have sometimes
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employed an ad hoc compression correction which consists in essence of introducing a term
h@w=@z into _h: This can be done in the present models as well, but it would be preferable
to rebuild the models allowing for compression effects from the outset. This is currently in
progress and will be reported elsewhere in due course (Ramshaw 1998c).

� The present models are limited to single-mode perturbations in the linear regime, and should
be generalized to allow for multimode perturbations and mode coupling. Unfortunately, it is
not clear how to accomplish this without a substantial increase in complexity.

� The treatment of shocks (impulsive accelerations) in RT stable cases presents some prob-
lems. In such casesh(t) exhibits oscillations abouth = 0; and if the impulse arrives when
h is very small or zero, it will have little or no effect. This problem should be ameliorated
by a multimode capability with incommensurate frequencies. In addition, many hydrocodes
treat shocks by shock smearing or capturing techniques, which artificially thicken the shock
and prolong its duration. The numerical shock may then become gradual rather than impul-
sive in comparison to the time scale of the interface oscillations, and it will not then deposit
the correct energy. This problem may be dealt with by monitoring the artificial viscosity to
detect the presence of a shock, storing the accumulated velocity jump until the shock is just
past the interface, and then impulsively depositing this accumulated velocity jump into the
mix model.

� In their present form, these models neglect surface tension and do not compute the transition
from chunk to atomic mix. Removal of this restriction will probably require additional
variables to represent information about the spectrum of length scales and the rate of atomic
mixing.

� In some problems the accelerating interface is simultaneously ablating, and this will affect
the instability growth in ways that the models cannot currently represent.

� Some problems involve multiple interacting interfaces, and the present models do not allow
for this.

� Finally, the consistent coupling between simple mix models of this type and the various
turbulence models currently used in hydrodynamics codes presents a variety of unresolved
issues.
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